markov_v13_ensemble_random

AuthorPiotrekG
Submission date2018-09-11 16:01:22.032850
Rating6457
Matches played206
Win rate67.48

Use rpsrunner.py to play unranked matches on your computer.

Source code:

from __future__ import division
import random
import itertools

beat = {'R': 'P', 'P': 'S', 'S': 'R'}


class MarkovChain():

    def __init__(self, type, beat, level, memory, score=0, score_mem=0.9):
        self.type = type
        self.matrix = self.create_matrix(beat, level, memory)
        self.memory = memory
        self.level = level
        self.beat = beat
        self.score = score
        self.score_mem = score_mem
        self.prediction = ''
        self.name = 'level: {}, memory: {}'.format(self.level, self.memory)
        self.last_updated_key = ''

    @staticmethod
    def create_matrix(beat, level, memory):

        def create_keys(beat, level):
            keys = list(beat)

            if level > 1:

                for i in range(level - 1):
                    key_len = len(keys)
                    for i in itertools.product(keys, ''.join(beat)):
                        keys.append(''.join(i))
                    keys = keys[key_len:]

            return keys

        keys = create_keys(beat, level)

        matrix = {}
        for key in keys:
            matrix[key] = {'R': 1 / (1 - memory) / 3,
                           'P': 1 / (1 - memory) / 3,
                           'S': 1 / (1 - memory) / 3}

        return matrix

    def update_matrix(self, key_lagged, response):

        for key in self.matrix[key_lagged]:
            self.matrix[key_lagged][key] = self.memory * self.matrix[key_lagged][key]

        self.matrix[key_lagged][response] += 1
        self.last_updated_key = key_lagged

    def update_score(self, inp, out):

        if self.beat[out] == inp:
            self.score = self.score * self.score_mem - 1
        elif out == inp:
            self.score = self.score * self.score_mem
        else:
            self.score = self.score * self.score_mem + 1

    def predict(self, key_current):

        probs = self.matrix[key_current]

        if max(probs.values()) == min(probs.values()):
            self.prediction = random.choice(list(beat.keys()))
        else:
            self.prediction = max([(i[1], i[0]) for i in probs.items()])[1]

        if self.type == 'input_oriented':
            return self.prediction
        elif self.type == 'output_oriented':
            return self.beat[self.prediction]


class RandomPredictor():
    def __init__(self, type):
        self.type = type
        self.prediction = ''

    def predict(self):
        self.prediction = random.choice('RPS')
        return self.prediction


class Ensembler():
    def __init__(self, type, beat, min_score=-10, score=0, score_mem=0.9):
        self.type = type
        self.matrix = {i: 0 for i in beat}
        self.beat = beat
        self.min_score = min_score
        self.score = score
        self.score_mem = score_mem
        self.prediction = ''

    def update_score(self, inp, out):

        if self.beat[out] == inp:
            self.score = self.score * self.score_mem - 1
        elif out == inp:
            self.score = self.score * self.score_mem
        else:
            self.score = self.score * self.score_mem + 1

    def update_matrix(self, pred_dict, pred_score):
        norm_dict = {key: pred_dict[key] / sum(pred_dict.values()) for key in pred_dict}
        for key in self.matrix:
            if pred_score >= self.min_score:
                self.matrix[key] = self.matrix[key] + pred_score * norm_dict[key]

    def predict(self):

        if max(self.matrix.values()) == min(self.matrix.values()):
            self.prediction = random.choice(list(beat.keys()))
        else:
            self.prediction = max([(i[1], i[0]) for i in self.matrix.items()])[1]

        return self.prediction


class HistoryColl():
    def __init__(self):
        self.history = ''

    def hist_collector(self, inp, out):
        self.history = self.history + inp
        self.history = self.history + out
        if len(self.history) > 10:
            self.history = self.history[-10:]

    def create_keys(self, level):
        return self.history[-level:]

    def create_keys_hist(self, level):
        key_hist = self.history[-level - 2:-2]
        inp_latest = self.history[-2]
        out_latest = self.history[-1]
        return key_hist, inp_latest, out_latest


if input == '':

    random_pred = RandomPredictor('random')

    output = random_pred.predict()

    history = HistoryColl()

    memory = [0.5, 0.6, 0.7, 0.8, 0.9, 0.93, 0.95, 0.97, 0.99]
    level = [1, 2, 3, 4]
    ensemble_min_score = [5]

    models_inp = [MarkovChain('input_oriented', beat, i[0], i[1]) for i in itertools.product(level, memory)]
    models_out = [MarkovChain('output_oriented', beat, i[0], i[1]) for i in itertools.product(level, memory)]
    models_ens = [Ensembler('ensemble', beat, i) for i in ensemble_min_score]

    models = models_inp + models_out + models_ens

elif len(history.history) == 10:

    history.hist_collector(input, output)

    max_score = 0

    for model in models:

        if model.type in ('input_oriented', 'output_oriented'):
            key_hist, inp_latest, out_latest = history.create_keys_hist(model.level)
            key_curr = history.create_keys(model.level)

        if model.prediction != '':
            model.update_score(input, beat[model.prediction])

        if model.type == 'input_oriented':
            model.update_matrix(key_hist, inp_latest)

        elif model.type == 'output_oriented':
            model.update_matrix(key_hist, out_latest)

        elif model.type == 'ensemble':
            for mod in models:
                if mod.type in ('input_oriented', 'output_oriented'):
                    model.update_matrix(mod.matrix[mod.last_updated_key], model.score)

        if model.type in ('input_oriented', 'output_oriented'):
            predicted_input = model.predict(key_curr)
        elif model.type == 'ensemble':
            predicted_input = model.predict()

        if model.score > max_score:
            best_model = model
            max_score = model.score
            output = beat[predicted_input]

    if max_score < 1 or random.random() < 0.1:
        output = random_pred.predict()

else:
    history.hist_collector(input, output)
    output = random.choice(list(beat.keys()))